Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the imagemagick-engine domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio ct è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121
microscopy – Progress in Research

Pioneering study sheds light on poorly understood aspect of cancer

A new scientific study published in the journal Science Advances has investigated a still poorly understood aspect of cancer, therapy-induced senescence in tumor cells. The study, the result of collaboration between researchers from Politecnico di Milano, Johns Hopkins University in Baltimore, the National Cancer Institute in Milan, and the National Research Council, expands our understanding of cancer biology and paves the way for future therapeutic advancements.

The team worked to uncover the biological mechanisms behind the formation of “therapy-induced senescent” (TIS) cells, a small percentage of treated tumor cells that exhibits resistance to conventional therapies (chemotherapy and radiation therapy), leading to tumor quiescence and ultimately, recurrence.

This result is a clear example of how cutting-edge technologies, multidisciplinary expertise, and strong international collaborations are crucial in addressing the most pressing biological questions, such as the early reaction mechanisms of tumor cells to anticancer therapies.

Arianna Bresci, first author of the study and doctoral student at Department of Physics

Researchers utilized advanced optical microscopy techniques, combining three-dimensional holograms of tumor cells with ultra-short pulses of laser light. They explored both the chemical and morphological aspects of TIS cells in human tumors, without the use of invasive techniques, preserving the natural state of the cells.

The research group was able to distinguish key features of TIS cells in human tumor cells: the reorganization of the mitochondrial network, overproduction of lipids, cell flattening, and enlargement. By analyzing a considerable number of cells, researchers established a clear timeline for the development of these distinctive signs.

This discovery may lead to applications in the development of personalized treatments and the possibility of refining current screening protocols for oncology therapy.

Our findings provide important insights into the complex world of TIS in human tumor cells. In our laboratory at Politecnico di Milano, we have developed a new non-invasive laser microscope that has allowed us to understand the initial stages of this phenomenon.

Dario Polli, associate professor at Department of Physics and coordinator of the study 

The microscope that reveals the chemical composition of samples

An international research team co-ordinated by the Institute for Photonics and Nanotechnologies of the National Research Council in Milan (CNR-IFN) and involving researchers from Politecnico di Milano’s Department of Physics, Columbia University and Stanford University, has developed an innovative optical microscope capable of producing detailed images of the chemical composition of a sample more effectively compared to the systems currently in use. The result has been published in the journal Optica.

This instrument represents a major breakthrough in the field of microscopy and spectroscopy, opening up new perspectives for research in the materials and life sciences. Indeed, it will be able to contribute to the study of innovative two-dimensional materials and to the characterisation of microplastics found in the environment and within animal tissues.

The benefits of the microscope stem from the unprecedented combination of two techniques, Raman spectroscopy and Fourier transform spectroscopy. The developed method allows Raman and fluorescence maps to be acquired in up to 100 times less time than with traditional instruments and to measure all sample points at the same time and with high efficiency, acquiring more data simultaneously.

fastMOT: revolutionising medical imaging

With its innovative fast gated, ultra-high quantum efficiency single-photon sensor, the fastMOT (fast gated superconducting nanowire camera for Multi-functional Optical Tomograph) project will enable deep body imaging with diffuse optics. Implemented in the new Multifunctional Optical Tomograph, the light sensor will achieve a 100x improvement of signal-to-noise ratio compared to using existing light sensors.

The fastMOT project will receive a total of 3 million euro in funding: 2.49 million euro from the European Innovation Council programme and 525,000 Euro from the UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee.

Traditionally, organ monitoring and deep-body functional imaging are performed using ultrasound, Xray (including CT), PET or MRI. However, these techniques allow only extremely limited measurements of functionality and are usually combined with exogenous and radioactive agents. To overcome this limitation, six partners, coordinated by the Dutch SME Single Quantum, have joined forces to develop an ultra-high performance light sensor in different imaging techniques to radically improve the performance of microscopy and imaging. 

The novel sensor is based on superconducting nanowire single-photon detectors (SNSPDs), which have been shown to be ultra-fast and highly efficient. However, the active area and number of pixels have so far been limited to micrometre diameters and tens of pixels.

The fastMOT consortium now aims at developing new techniques to overcome this limit and scale to 10,000 pixels and millimetre diameter. In addition, new strategies for performing time domain near infrared spectroscopy (TDNIRS) and time domain speckle contrast optical spectroscopy (TD-SCOS) will be developed to optimally use this new light sensor with Monte-Carlo simulations. The new light sensor will be implemented in an optical tomograph and will achieve a 100x improvement of signal-to-noise ratio compared to using existing light sensors.  

The new sensing technology will have a major impact on a wide range of sectors: not only will it improve microscopy and imaging performance, but it will also enable groundbreaking applications that will lead to new insights and a major economic boost. The proposed Multifunctional Optical Tomograph will make it possible to image deep organ and optical structures and monitor body functions such as oxygenation, haemodynamics, perfusion and metabolism. It also has the potential to significantly improve the accuracy of non-invasive breast cancer diagnosis, reducing the risk of false positive biopsies, with benefits for patients’ quality of life and improved sustainability for the healthcare systems.  

In addition to Single Quantum, the participating institutions are the Center for Ultrafast Science and Biomedical Optics CUSBO at the Department of Physics of the Politecnico di Milano in Italy (unit responsible Prof. Alberto Dalla Mora), the Institute of Photonic Sciences ICFO in Spain, the Technische Universiteit Delft in the Netherlands, the network of European laser research infrastructures Laserlab-Europe AISBL in Belgium, the Forschungsverbund Berlin e.V. in Germany, and the University College London in the United Kingdom.

fastMOT is funded by the EU’s HORIZON EUROPE programme (grant agreement 101099291) and by the UK Research and Innovation (UKRI) under the UK government’s Horizon Europe funding guarantee (grant number 10063660).

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto