NEXT GENERATION EU
KEY ENABLING TECHNOLOGIES
19/09/2023

Pioneering study sheds light on poorly understood aspect of cancer

Our researchers examined therapy-induced senescence in tumor cells

A new scientific study published in the journal Science Advances has investigated a still poorly understood aspect of cancer, therapy-induced senescence in tumor cells. The study, the result of collaboration between researchers from Politecnico di Milano, Johns Hopkins University in Baltimore, the National Cancer Institute in Milan, and the National Research Council, expands our understanding of cancer biology and paves the way for future therapeutic advancements.

The team worked to uncover the biological mechanisms behind the formation of “therapy-induced senescent” (TIS) cells, a small percentage of treated tumor cells that exhibits resistance to conventional therapies (chemotherapy and radiation therapy), leading to tumor quiescence and ultimately, recurrence.

This result is a clear example of how cutting-edge technologies, multidisciplinary expertise, and strong international collaborations are crucial in addressing the most pressing biological questions, such as the early reaction mechanisms of tumor cells to anticancer therapies.

Arianna Bresci, first author of the study and doctoral student at Department of Physics

Researchers utilized advanced optical microscopy techniques, combining three-dimensional holograms of tumor cells with ultra-short pulses of laser light. They explored both the chemical and morphological aspects of TIS cells in human tumors, without the use of invasive techniques, preserving the natural state of the cells.

The research group was able to distinguish key features of TIS cells in human tumor cells: the reorganization of the mitochondrial network, overproduction of lipids, cell flattening, and enlargement. By analyzing a considerable number of cells, researchers established a clear timeline for the development of these distinctive signs.

This discovery may lead to applications in the development of personalized treatments and the possibility of refining current screening protocols for oncology therapy.

Our findings provide important insights into the complex world of TIS in human tumor cells. In our laboratory at Politecnico di Milano, we have developed a new non-invasive laser microscope that has allowed us to understand the initial stages of this phenomenon.

Dario Polli, associate professor at Department of Physics and coordinator of the study 

Life Sciences

You may also be interested in

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto