Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the imagemagick-engine domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio ct è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121
tumor – Progress in Research

3D personalized model of biliary tract cancer

It is only a few centimeters in size and can be held between two fingers, but in the micro-channels carved inside it, it’s hidden a three-dimensional and highly faithful model of a biliary tract cancer called cholangiocarcinoma, complete with its tumor microenvironment.

This 3D model is built starting from a sample of patient’s cancer cells and thus it represents a patient-specific “organ-on-chip”: a technology made possible only through a multidisciplinary approach that merges biomedicine, physics and engineering.

The innovative prototype is the result of the collaboration between Ana Lleo De Nalda, Full Professor at Humanitas University and head of the Hepatobiliary Immunopathology Laboratory at Humanitas Research Hospital, and Marco Rasponi, Associate Professor at Politecnico di Milano and head of the Laboratory of Microfluidics and Biomimetic Microsystems.

The study was made possible thanks to the collaboration with the group of Prof. Guido Torzilli, Director of the Department of General Surgery and head of the Hepatobiliary Surgery Unit of the IRCCS Istituto Clinico Humanitas.

The ultimate goal of the device is to accelerate research on cholangiocarcinoma by providing a new laboratory model that better mimics what we observe in patients. At the same time, it will help advancing precision medicine, since it could be potentially used as a personalized drug-testing platform, helping predict patients’ response to therapies.

Ana Lleo and Marco Rasponi

The study was funded by AIRC – the Italian Foundation for Cancer Research, and was published in the Journal of Hepatology Reports.

What is cholangiocarcinoma

Cholangiocarcinoma is a rare cancer of the liver (it affects about 5,500 people in Italy alone, each year) and it derives from a malignant transformation of cholangiocytes, the cells lining the biliary tract.

Unfortunately, the disease is often diagnosed at an advanced stage, because patients show very few symptoms. This is also why treatments are often ineffective: at the time of diagnosis, only 10-30% of patients are eligible to undergo surgical removal of the tumor.

Precisely because of the reduced therapeutic options and high mortality of cholangiocarcinoma, we need new in vitro models that can recapitulate the characteristics of the disease and in particular the interaction between tumor cells and cells of the immune system, which play a key role in its progression and response to drugs.

Ana Lleo

A 3D platform for advancing research and personalized medicine

Now, for the first time, researchers from Humanitas and Politecnico di Milano developed a personalized 3D model of the disease.

It is a microfluidic chip a few centimeters in size. Inside the device, in the micrometer channels realized using advanced photolithographic techniques, we seeded cancer cells sampled from patients affected by cholangiocarcinoma. The cells successfully reproduced the tumor architecture in vitro.

Marco Rasponi

In a series of experiments, the team of researchers demonstrated that the device faithfully recapitulates what we observe in individual patients, both in terms of T-cell activation, that correlates with tumor infiltration, and in terms of therapeutic response to different drugs, based on the characteristics of cancer recurrence.

We are very happy with the result obtained, which was only possible thanks to the combination of different expertise and knowledge.

The next steps will be to further optimize and improve the device, both as a research model and as a personalized drug-testing platform.

Ana Lleo and Marco Rasponi

We want to add cells of innate immune system, such as macrophages, which play an important role in tumor progression, and introduce micro-pumps that can mimic blood flow and vascularization. We also need to test it on larger groups of patients, to confirm its ability to recapitulate the phenomena we observe in the clinical setting.

TROPHY project kicks off

Activities related to the TROPHY (ulTRafast hOlograPHic FT-IR microscopY) project have officially started. TROPHY is a research project, funded by the European Commission under the Horizon Europe programme, which aims to develop a novel label-free vibrational microscopy approach for cancer diagnosis.

Cancer diagnosis is traditionally done on intraoperative frozen tissue sections by post-surgical histopathologic analysis and, in selected cases, by elaborated and time-consuming molecular diagnosis. The analysis of the biopsy is performed through the staining of the tissue and the evaluation of the morphology of its cells under an optical microscope. This approach is neither fast nor quantitative, has an intrinsic variability in the interpretation depending on the experience of the histopathologist, and provides limited molecular information.

The microscope developed thanks to the TROPHY project will image molecular biomarkers with unprecedented speed and chemical selectivity for a rapid, precise, and non-biased tumor analysis. To this purpose, it will blend in a unique fashion elements of several microscopies developed in the past decades, namely photo-thermal infrared, Fourier transform infrared and Digital Holography Microscopy, bringing them to the unprecedented ultrafast timescale. It will also integrate Artificial Intelligence to produce fast results and assist in the tumour grading process even during surgery.

This microscope will be used to assist healthcare professionals during tumor biopsy diagnostics, provide an accurate diagnosis for curative oncosurgery, guarantee complete resection during intervention, determine the best therapeutic approach tailored to the patient, and identify resistant tumor clones under targeted therapy, paving the way for continual precision medicine in cancer.

The project is coordinated by the Politecnico di Milano with Prof. Marco Marangoni from the Department of Physics as scientific coordinator. The other project partners are Fundacio Institut de Ciences Fotoniques (ICFO, Spain), Consiglio Nazionale delle Ricerche (CNR, Italy), Lyncee Tec SA (LT, Switzerland), Universtaetsklinikum Jena (JUH, Germany), University of Exeter (UNEXE, UK), University of Cambridge (UCAM, UK).

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto