Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the imagemagick-engine domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio ct è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121
spectroscopy – Progress in Research

A revolution in the diagnosis and treatment of cancer

CHARM is a project aiming to develop a medical device based on high-speed, low-cost Raman digital imaging technology and artificial intelligence to transform cancer diagnosis and treatment.

The technology will analyse the molecular composition of patient tissue samples to distinguish cancerous from healthy cells without the need for chemical staining.

CHARM’s Raman imaging technology uses graphene-based ultra-fast fibre lasers to generate digital images of patient tissue for automatic analysis by artificial intelligence to support diagnosis. Because the images are digital, they can be viewed remotely, allowing histopathologists to work more efficiently and to support regions and countries short of qualified staff. The technology also potentially opens the way for personalised treatments for cancer.

The partners involved are Cambridge Raman Imaging Ltd. (CRI), a polimi spin-off, the University of Cambridge, Consiglio Nazionale delle Ricerche, Politecnico Di Milano, the Jena University Hospital (Germany) and the firms INsociety (Italy) and Inspiralia (Spain). The project coordinator is Dr Matteo Negro, CRI’s Chief Technology Officer.

CHARM is one of the 42 projects selected for a €3.3 million funding from 292 submitted in the first ever EIC (European Innovation Council) Transition Challenges, intended to support moving technologies from laboratories into the real world. The EIC is Europe’s flagship innovation programme to identify, develop and scale up breakthrough technologies and game changing innovations. In the case of CHARM, it aims to develop medical devices to the preclinical validation phase.

Politecnico di Milano, who pioneered the high-speed Raman imaging technology, will be responsible for the development of the microscope and the detection system.

I am excited to contribute to the translation of the results of our scientific studies into a commercial product which promises to significantly improve cancer diagnosis and therapy and have an important societal impact. To foster a close link between fundamental research and technological innovation is one of our main missions as academics and lies at the core of the EIC.

Prof. Giulio Cerullo, head of the ultrafast spectroscopy laboratory at Politecnico di Milano

LIGHT-CAP: sustainable solutions for conversion and storage of solar energy

Environmental sustainability is today a focal aspect of technological innovation and European research policies. The European Union is ready to achieve the ambitious objective of climate neutrality by 2050, and fundamental to this aim is the promotion of new solutions for energy, from renewable sources, such as solar energy, and with efficient effective energy consumption.

Politecnico di Milano is a partner in the LIGHT-CAP project, and as such it is pursuing the goal of bringing about radical change regarding methodologies used for conversion and storage of solar energy. Still today, these are based primarily on silicone solar panels and bulky batteries, kept separate in two different devices. LIGHT-CAP will introduce a new nanotechnology-based architecture able to combine the two functions of conversion and storage in a single versatile device.

LIGHT-CAP has obtained funding worth 3.18 million euros from the European Union and the consortium, coordinated by the IIT-Istituto Italiano di Tecnologia, includes EU and non-EU partners with academic and industrial backgrounds, in order to also be able to produce the first prototypes at the end of the project. In Italy in addition to the IIT, it also sees the involvement of Politecnico di Milano and the IIT start-up, Bedimensional, active in the production of nanomaterials and their implementation in devices for energy applications..

The aim of the LIGHT-CAP project is to manufacture a device similar to a battery charged by light; exposed, for example, to sunlight, the device charges like a normal battery plugged into a power outlet. Again like a normal battery, the energy stored can be used to power portable apparatus. To do this today,it takes two devices, a photovoltaic cell and a battery. The project device will be able to do both things.

The mechanism at the base is the separation of positive and negative charges after light irradiation on interfacing between two nanomaterials, one made up of nanoparticles measuring just a few nanometres, the other as fine as one or a few atoms like graphene.

To do this, Politecnico di Milano will use ultrafast continuous spectroscopy techniques (up to a time resolution of just a few femtoseconds) to study the optical properties of manufactured nanomaterials. The fundamental interactions between the different types of nanomaterials in liquid-liquid, liquid-solid, and solid-solid interfaces will also be studied.. The experimental measurements will be corroborated by a variety of theoretical models.

Politecnico di Milano will coordinate the project’s second Work Package, which focuses on the optical characterisation, optoelectronic characterisation and electrical characterisation of the new nanomaterials and new interfaces and heterojunctions.

The researchers will be using eco-compatible, easy-to-source materials (such as many minerals in the earth’s crust), to avoid supply-related criticalities. The project’s innovative ideas were successful in the Horizon 2020 European call for proposals for “Breakthrough zero-emissions energy storage and conversion technologies for climate-neutrality” as part of the “FET Proactive:  Emerging Paradigms and Communities” programme.

The LIGHT-CAP comprises: the Istituto Italiano di Tecnologia (Italy), the Ecole Polytechnique Federale de Lausanne (Switzerland), the Technische Universitaet Dresden (Germany), the Justus-Liebig-Universitaet Giessen (Germany), Politecnico di Milano (Italy) and the Fundacion IMDEA Energia (Spain). The project also benefits from collaboration with a non-EU research group at the ‘Okinawa Institute of Science and Technology in Japan, which will provide key competences in the synthesis and application of graphene-based nanomaterials. Further support will also come from the IIT start-up Be-Dimensional and from the company “Thales Research and Technology”.

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto