Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the imagemagick-engine domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio ct è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121
Lampo enhances the ability to forecast thunderstorms – Progress in Research
14/10/2021

Lampo enhances the ability to forecast thunderstorms

Mitigating the risk of flooding and hydrogeological instability

The activities of the LAMPO (Lombardy-based Advanced Meteorological Predictions and Observations) project have been concluded. The aim of the project was to test, in the real open-air laboratory of the Seveso river basin, a system capable of mitigating the risk of flooding and hydrogeological instability.

In an area that straddles the provinces of Milan, Como and Lecco, a network of nine GNSS stations has been installed to monitor the content of water vapour in the atmosphere, with the aim of improving the very short-term forecasting of thunderstorm phenomena.

The LAMPO prediction system uses a multi-sensor approach, integrating real-time meteorological network data and GNSS signal delays due to vapour in the atmosphere.

The use of GNSS to estimate water vapour on a local scale is currently limited due to the high cost of the receivers. The innovation introduced by the LAMPO project was the use of modern, low-cost instruments, which made it possible to set up a large number of measuring stations and thereby create a data flow capable of providing continuous water vapour estimates over the entire Seveso basin.

The prediction system, based on artificial intelligence algorithms capable of learning from past data when a storm occurs, accurately predicts the likelihood of heavy rainfall in 80% of cases in the greater Milan area and with a lead time of around 30 minutes.

The LAMPO project, financed by Fondazione Cariplo, was led by the Geomatics and Earth Observation Laboratory (GEOlab) of the Politecnico di Milano and involved the Hydro-Meteorological Service of ARPA Lombardia, the Politecnico spin-off GReD, the Department of Geosciences of the University of Padua and the Fondazione Politecnico di Milano.

Green Deal

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto