Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the imagemagick-engine domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio ct è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121
organoids – Progress in Research

3D personalized model of biliary tract cancer

It is only a few centimeters in size and can be held between two fingers, but in the micro-channels carved inside it, it’s hidden a three-dimensional and highly faithful model of a biliary tract cancer called cholangiocarcinoma, complete with its tumor microenvironment.

This 3D model is built starting from a sample of patient’s cancer cells and thus it represents a patient-specific “organ-on-chip”: a technology made possible only through a multidisciplinary approach that merges biomedicine, physics and engineering.

The innovative prototype is the result of the collaboration between Ana Lleo De Nalda, Full Professor at Humanitas University and head of the Hepatobiliary Immunopathology Laboratory at Humanitas Research Hospital, and Marco Rasponi, Associate Professor at Politecnico di Milano and head of the Laboratory of Microfluidics and Biomimetic Microsystems.

The study was made possible thanks to the collaboration with the group of Prof. Guido Torzilli, Director of the Department of General Surgery and head of the Hepatobiliary Surgery Unit of the IRCCS Istituto Clinico Humanitas.

The ultimate goal of the device is to accelerate research on cholangiocarcinoma by providing a new laboratory model that better mimics what we observe in patients. At the same time, it will help advancing precision medicine, since it could be potentially used as a personalized drug-testing platform, helping predict patients’ response to therapies.

Ana Lleo and Marco Rasponi

The study was funded by AIRC – the Italian Foundation for Cancer Research, and was published in the Journal of Hepatology Reports.

What is cholangiocarcinoma

Cholangiocarcinoma is a rare cancer of the liver (it affects about 5,500 people in Italy alone, each year) and it derives from a malignant transformation of cholangiocytes, the cells lining the biliary tract.

Unfortunately, the disease is often diagnosed at an advanced stage, because patients show very few symptoms. This is also why treatments are often ineffective: at the time of diagnosis, only 10-30% of patients are eligible to undergo surgical removal of the tumor.

Precisely because of the reduced therapeutic options and high mortality of cholangiocarcinoma, we need new in vitro models that can recapitulate the characteristics of the disease and in particular the interaction between tumor cells and cells of the immune system, which play a key role in its progression and response to drugs.

Ana Lleo

A 3D platform for advancing research and personalized medicine

Now, for the first time, researchers from Humanitas and Politecnico di Milano developed a personalized 3D model of the disease.

It is a microfluidic chip a few centimeters in size. Inside the device, in the micrometer channels realized using advanced photolithographic techniques, we seeded cancer cells sampled from patients affected by cholangiocarcinoma. The cells successfully reproduced the tumor architecture in vitro.

Marco Rasponi

In a series of experiments, the team of researchers demonstrated that the device faithfully recapitulates what we observe in individual patients, both in terms of T-cell activation, that correlates with tumor infiltration, and in terms of therapeutic response to different drugs, based on the characteristics of cancer recurrence.

We are very happy with the result obtained, which was only possible thanks to the combination of different expertise and knowledge.

The next steps will be to further optimize and improve the device, both as a research model and as a personalized drug-testing platform.

Ana Lleo and Marco Rasponi

We want to add cells of innate immune system, such as macrophages, which play an important role in tumor progression, and introduce micro-pumps that can mimic blood flow and vascularization. We also need to test it on larger groups of patients, to confirm its ability to recapitulate the phenomena we observe in the clinical setting.

3D printing to reveal molecular causes of neurological disorders

Creating an accurate model of the human cerebral cortex by using state-of-the-art 3D printing techniques to reveal the molecular causes of the onset and development of neurological disorders, including Pitt-Hopkins syndrome.

This is the aim of project “Elucidating the molecular mechanisms underlying Pitt-Hopkins syndrome through the generation of 3D printed vascularized cortical organoids” recently funded by Fondazione CARIPLO with €250,000 under the call for proposals “Biomedical research conducted by young researchers 2021”.

The topic is of considerable medical importance because, given the structural complexity of this area of the brain, it is impossible to reproduce and study it in the laboratory. Indeed, the cause of these diseases is often unknown to date, thus preventing the development of effective treatments.

Through the proposed analysis, we expect to accurately identify the molecular and cellular pathological mechanisms underlying Pitt-Hopkins syndrome. The results should also be relevant for other neurological disorders, and contribute to define new therapeutic strategies and identify diagnostic markers.

Mattia Sponchioni, researcher at the Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” and project leader

The project will, particularly, reproduce the human cerebral cortex by creating vascularised cortical organoids. The reproduction of the complex system of blood vessels, which are essential for the supply of oxygen and nutrients, is of the utmost importance as it will enable the model to make predictions over a much longer timeframe than studies conducted to date.

This ambitious project will witness a strong synergy between Politecnico di Milano and Humanitas University for interdisciplinary work involving the development of new 3D printing technologies and an accurate molecular biological analysis.

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto