Notice: Function _load_textdomain_just_in_time was called incorrectly. Translation loading for the imagemagick-engine domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121

Notice: La funzione _load_textdomain_just_in_time è stata richiamata in maniera scorretta. Il caricamento della traduzione per il dominio ct è stato attivato troppo presto. Di solito è un indicatore di un codice nel plugin o nel tema eseguito troppo presto. Le traduzioni dovrebbero essere caricate all'azione init o in un secondo momento. Leggi Debugging in WordPress per maggiori informazioni. (Questo messaggio è stato aggiunto nella versione 6.7.0.) in /usr/local/data/sites/proginres/htdocs-SSL/wp-includes/functions.php on line 6121
asp – Progress in Research

GAP: a step forward in preventing bone fractures

A group of students devised an innovative device and algorithm for understanding and preventing bone fractures. In the course of their lifetime, approximately 40% of Italians will suffer a broken femur, vertebra or wrist. Fractures caused by osteoporosis have major consequences in terms of mortality and motor disability, with high health and social costs.

The GAP project (image-Guided experimental and computational Analysis of fractured Patients) seeks to go beyond the limits of current bone fracture diagnostics to develop more effective methods of early diagnosis. The idea was conceived within the Alta Scuola Politecnica (ASP), the international programme reserved for the best students from the Politecnico di Milano and Politecnico di Torino.

The working group focused on the study of bone fractures at the microscale, where there are still many doubts as to the origin and propagation of fractures. The role of small cavities in the bone architecture, known as lacunae, remains unclear. In order to get a complete view, the students at ASP analysed the phenomenon through both an experimental campaign and using computational models.

They designed a micro-compression device that both tests femoral bone samples under conditions that reproduce the in-vivo working conditions inside the human body and acquires images of specific bone sections. This was made possible by the use of innovative technology, based on the generation of synchrotron light and high-quality free-electron lasers, at Elettra Sincrotrone in Trieste. Synchrotron light is a form of electromagnetic radiation characterised by charged particles moving at a very high velocity, close to the speed of light, and which consequently has a very short wavelength. These characteristics mean that the radiation peak falls within the range of X-rays and is very suitable for analysing tissue such as bone. This is the key point of the research, because, up until now, no one had ever studied bone lacunae with such high-resolution images. Indeed, the strength of this research is precisely the quality and quantity of images acquired and analysed.

Equally innovative was the technique used to process this large amount of data. Having to examine over 2 million images, the students decided to automate the process by developing a convolutional neural network capable of autonomously identifying bone lacunae. Neural networks are deep learning algorithms that are now the focus of attention in the international scientific community because of their potential in analysing clinical images. This algorithm saved more than 2 million hours in the post-processing phase. At the same time, the students also examined bone lacunae using computational simulations. They developed and validated a model that reproduces bone compression tests that can be used for future analyses without the need for new bone samples.

The GAP project, coordinated by Maria Chiara Sbarra, together with Irene Aiazzi, Bingji Liu, Alessandro Casto and Giovanni Ziarelli, has achieved important results in just two years of work. The multidisciplinary team, led by Professor Laura Vergani and PhD student Federica Buccino from the Department of Mechanics at the Politecnico di Milano, collaborated with ETH Zurich, the Elettra Sincrotrone international research centre in Trieste and the San Donato Group.

A labyrinth that traps noise

Labyrinthine metamaterials capable of absorbing sound waves: this is the new technology developed by six students at the Alta Scuola Politecnica, an international programme reserved for the best students from the Politecnico di Milano and the Politecnico di Torino.

It consists of panels capable of absorbing sound due to a particular internal structure featuring innovative acoustic properties. In fact, the performance of the panels is not only due to their constituent components, but also their labyrinthine geometric shape, which makes the sound wave reflect multiple times, attenuating it until it disappears. It is as if the sound is ‘lost’ in the labyrinth. These structures are capable of muffling different types of sound, from those with average frequencies typical of speech and some musical instruments, to those with low frequencies caused by engines. They may therefore be applied to a wide range of sectors, from construction to automobiles to domestic environments.

The six students who created the panel are Leonardo BettiniVenus Hasanuzzaman KamrulEmanuele MussoFabio NistriDavide Piciucco, and Matteo Zemello. The panels are light and low cost, since they can be produced entirely with 3D printing using plastic waste.

The project was tested and validated in the Department of Energy-DENERG ‘Galileo Ferraris’ at the Politecnico di Torino with the industrial partner Phononic Vibes, a company created in 2018 as a spin-off of the Politecnico di Milano. The project will continue under the FET – Boheme European research path coordinated by the Università di Trento with the involvement of the Politecnico di Torino, Imperial College of London, and ETH Zürich.

Questo sito utilizza i cookies per le statistiche e per agevolare la navigazione nelle pagine del sito e delle applicazioni web. Maggiori informazioni sono disponibili alla pagina dell'informativa sulla privacy

Accetto